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Abstract—Design sensitivity analysis of axisymmetric elastic media is formulated using boundary
elements. The kernels for sensitivity matrices are obtained through implicit differentiation of the
corresponding boundary element elasticity keenels. The singular terms are obtained by applying the
boundary displacements and tractions, and their respective sensitivities for the rigid body motion
mode and the inflution mode. The equations for the recovery of sensitivities of axisymmetric
boundary stresses are presented. As a check on accuracy, the approach is applied to a series of
examples for which analytical elasticity solutions are available. The predictions for both dis-
placement- and stress-sensitivities are accurate. Additional examples are provided to demonstrate
the versatility of the present approach.

INTRODUCTION

Many axisymmetric components, such as fan, compressor, and turbine disks in gas turbine
engines, are cmployed in the design of high performance acrospace, automotive and other
components, The determination of optimal shapes of such critical components is of
obvious importance to the industry. The tools developed for such applications must be
cconomical and ctlicient to be of practical utility. The boundary integral equation method
described in texts by, among others, Barnerjee and Butterfield (1981) and Brebbia er al.
(1984), provides the possibility of an accurate analysis tool for axisymmetric components
with computing costs that are significantly less than those for axisymmetric finite element
analysis as noted by Cruse er al. (1977). A survey of research efforts for the structural
analysis of axisymmetric problems has been given by Bakr (1983).

The boundary element method also offers significant advantages for the efficient com-
putation of response design sensitivities as noted by Saigal es al. (1989). This method has
recently been employed for applications, such as structural analysis, heat transfer, potential
problems and ucrodynamics. A survey of such efforts wus given by Mota Soares and Choi
(1986). In the arca of sensitivity analysis of elastic continua, the research efforts to date
have been directed towards two-dimensional plane elasticity problems. Kane and Saigal
(1988) presented the implicit differentiation formulittion for sensitivity analysis using dis-
continuous boundary elements. This formulation was extended to continuous elements by
Saigal et al. (1989). A shape optimization system based on this formulation has been
developed by Saigal and Kane (1989). Wu (1986) employed a finite-difference scheme to
obtain the derivative of the system matrices used in structural sensitivity analysis. Barone
and Yang (1988) developed a direct differentiation approach of the relevant BEM equations
for 2D problems followed by the discretization of these equations. Their method is a general
onc for 2D problems and they determined the sensitivitics around the clliptical hole using
this formulation. The rescarch concerning the shape sensitivity analysis of axisymmetric
clastic media has, however, not been reported in the literature so far.

The present paper presents a boundary clement formulation for the design sensitivity
analysis of axisymmetric continua. The sensitivity equations are first obtained by the implicit
differentiation of the discretized axisymmetric boundary element equations. The numerical
evaluation of the resulting integrals involving partial derivatives of the fundamental solu-
tions is discussed. The cases of a rigid body mode, and an inflation mode, respectively, are

t To whom all correspondence should be addressed.
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used for the evaluation of the singular terms. This technique is similar to the one available
in the literature for the evaluation of axisymmetric analysis integrals and shown by Sarihan
and Mukherjee (1982). Numencal examples are presented and compared to analytical
solutions when available to test the accuracy. and to demonstrate the validity of the present
formulations.

AXISYMMETRIC BOUNDARY ELEMENT ANALYSIS

A brief description of the axisymmetric boundary element formulation for linear
elasticity is given here to introduce the notation used. A detailed discussion of this for-
mulation may be found in, for example, the text by Banerjee and Butterfield (1981).

The boundary integral equations can be obtained from the principle of virtual work
and Betti's reciprocal law as

J T,ku,dr+J S, dQ =J T, uy, dr+J Siuy dQ. (1)
r 0 r 0

u, and T, arc the axisymmetric fundamental solutions for the displacements and the
tractions, respectively. The kernel functions u, and T, are the displacement and traction
solutions, respectively, in the direction, i, due to a unit ring load in the direction, k. f, are
the body forces acting on the axisymmetric body. In this study, torsional loading and body
forces are neglected. The resulting cquation ts then treated using a surface discretization.
After discretization, the boundary clement cquations can be written in matrix form as

(A uy = [B]LT (

to
~—

where

A, A,
_A.'r A::_u
‘B, B,

B:r B:: 1)

N is the number of degrees-of-freedom (d.o 1)) ; [#] is the matrix of interpolatton functions,
W), acting on the doo s associated with a given clement; ¢ s the isoparametric co-

T, T [H]Jd
& 7‘!.’ 7‘.‘.’ " o

T, u,
J (H)Jda i =12 N. 3)
o L. “::_ I}

i

ordinate; and J is the Jacobian.

A singular formulation was used in the present study leading to singular integrals.
The numerical evaluation of these singular integrals was avoided using the special cases of
deformation in the rigid body mode and the inflation mode, respectively. From the rigid
body modc condition

(Ade= =Y (A (4= =T (4., 4)
1= I

The inflation mode is obtained from the conditions

T.=n. T.=2vn.. u=r(1=20)(1+u)E and u, =0. (3)

n, and n. are the components of the normal in the r and = directions, respectively. v and £
are Poisson’s ratio and Young's modulus of clasticity, respectively. This yields the remain-
ing diagonal terms of the boundary element matrix [4] from
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(Arr)u(ur)t = [B"Br:]q[TrT-:]jr— Z [A,.,.A,:],-I[U,U:Lr"‘(Ar:),,'(u:),
= =

(A:r)iz(ur)i = X {B:rB::]ij[TrT:}f_ Z {A:rA::}ij[uru:];”(A::)u(u:)s’ (6)

/=t el
The terms (A,.)(u.); and (A..),(«.); on the right hand side in eqns (6) are both zero for
the present inflation mode since «, = 0 for this mode. The errors introduced due to the row
sum property in eqn (4) thus do not contribute to the evaluation of terms using eqns (6).
The boundary conditions are applied to eqns (2) and these equations are then rewritten by
bringing the unknown quantities on the left hand side and known quantities on the right
hand side as

(41 {5} = {8} M

where { v} is the vector containing the unknown displacements and tractions. On obtaining
the unknown displacements and tractions using eqn (7), the complete stress tensor is
obtained by substituting these quantities in the stress recovery expressions. These
expressions may be found in, among others, the text by Bakr (1985).

AXISYMMETRIC DESIGN SENSITIVITY FORMULATIONS

Displucement and traction sensitivitics

The design sensitivities determine the effect of variation of design parameters on the
response of the model. Differentiating the discretized boundary clement egns (2) with respect
to the design variable, X, we get

(Al fu} + 4] {u} e = [BL AT +[BIT} . @)

where [*] ;. denotes the partial derivative of [*] with respect to X, Equation (8) can be
rearranged in the form

(Al {u} = [BI{T}  +{c} )]
where
{c} = (81T} ~[A] {u}.

The vector {¢} in the above equation is known since the unknown displacements and
tractions are determined from eqn (7). Equation (9) is now rearranged to write the unknown
displacement- and traction-sensitivities on the left hand side. It is noted here that the
sensttivities corresponding to the specified displacements and tractions are known. The
rearrangement of eqn (9) will then require the same column exchange as was required in
writing eqn (7). Equation (9) is written in rearranged form as

-

(Al {3y} = {F} (10)

where { p} . is the vector of unknown displacement- and traction-sensitivities and is obtained
through the solution of eqn (10). Notice that this equation has the same left hand side
matrix, [4], as eqn (7). The triangular factorization of [4] obtained for the solution of eqn
(7) can then be saved and reused for the solution of eqn (10). This feature of the implicit
differentiation formulation leads to considerable computational economy.

The matrices [4] . and [B] . in eqn (8) are determined by performing implicit differ-
entiation of egn (3) as
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[A 4] J‘l {[T T} (H1J+ [T,, T} (HJ }d
A:"L A::_,_ 17 0 T’:z T_-_— . LY Tr: T;: t

B, B,. ! u,, u., u, u.

[ * "] =J { : ! [H]J+|: T [H]J_L}da. (an
B, B., 0 - .- |, . u..|,
. { i

w, and T, are the partial derivatives of the kernel functions. u, and T, respectively, with
respect to the design variable X,. These expressions are given in the Appendix. The sen-
sitivities of kernel functions «,,, and T,,, require the sensitivities of geometric quantities
(rpizoon,  on.;etc.) asseen from equations in the Appendix. To obtain these quantities.
the original mesh is first perturbed through a change in the design variable X to obtain a
new mesh. Forward—difference relationships are then applied between the original and the

new mesh. The sensitivity of the Jacobian, J .. with respect to X is obtained as

1
; [r‘u rat + :,u:,ul_]

‘].L = J

where

— 4, D — L) ) - D () - N RN )]
=hr r = h0 s = A0 o =M

K “

r‘«l

The determination of the diagonal terms of the sensitivity matrices (4], and [B]
requires the evaluation of singular integrals, These terms are evaluated by using the special
cases of deformation in a rigid body mode and an inflation mode, respectively, similar to
the evaluation of the diagonal terms of the boundary element matrices {4 ] and [B]. Consider
first a rigid body motion in the = direction given by: u, = ¢, = ¢, = 0, and u, = constant.
The sensitivities of all displacements and tractions are equal to zero for this case. Substituting
these conditions in eqn (8) leads to

(Ar:‘,)u = - Z ("L:_,)uv (A.':‘,_)n = - 2 (‘4:.‘AL)I/' (lz)
/=1 =1
it jA

Consider next the inflation mode conditions given by eqn (5). The corresponding
sensitivities ire given as:

1=2u) (1 +
T.,=n, T. =2vn., u = (- “[);(~“2 re. u, =0 (13)

The remaining diagonal terms are then obtained from

(A",L)“ (ur)l = - (An)u (ur_,_): + Z [Bn‘,_Br:‘,_]l/ [Tr T:Lr+ Z [B" Br:]u [TIJ, T:.L]/r

=1 j=1
hi N
- Z (Arr.,)l/(“r)/— Z (Arr)u (ur',)/
l/‘;'l //:Al
and
N At
(A:r‘,_)u (ur)x = - (A:r)u (“r_,')r + Z [B:,-"B_-:‘,‘],/ [Tr T:]/r+ Z [B:rB::]u [Trll_ T:',_}/’
f-1 IER
N N
- Z (-":r,)l/(“r)/_ Z (A:r)l'i (ur‘,_)y (14)
j=1 j= 1
j#i J#*t

This completes the formulation of the boundary element sensitivity matrices which are
required for the solution of the sensitivity vector {y} ; ineqn (10).
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Recovered boundary stress sensitivities

The expressions for the recovery of the complete stress tensor at the boundary were
given in Bakr (1985) for axisymmetric analysis. The boundary stress sensitivities are
obtained by the implicit differentiation of these boundary stress expressions as

on, = Tl.L‘ 2, = T:.L'
v E
0. =1, __UUn.L+ =0 (€22, +vey,), 0y, = Eegy, +v(o,+021,)
where
J.L l
eu‘L = - Fu2£+ juzd
and

1
€, = ;7[u,4Lr—u,r_,_]. (15)

The subscripts 1 and 2 correspond. respectively, to the normal and the tangential
dircctions of a coordinate system located at the surface. Corresponding components in the
cylindrical coordinate system may be obtained by using the appropriate tensor trans-
formation for g,,.

The evaluation of the expressions given in eqn (15) requires element displacements,
tractions and their respective sensitivitics. These quantities are determined as described in
the previous sections.

NUMERICAL RESULTS

A sct of axisymmetric test examples was solved to demonstrate the application of the
above formulations using quadratic, isoparametric boundary elements. The solutions for
these cases were compared to analytical results, when available, to verify the accuracy of
the present method. The present implementation permits the modeling of radial cross
sections with geometric configurations of a general shape. Numerical examples were chosen
to include axisymmetric structures with linear, circular and hyerbolic radial geometry,
respectively. The material properties considered for the following problems are : modulus
of elasticity, £ =30x 10°® psi, and Poisson’s ratio, v = 0.3. Average values of derived
sensitivities are reported for common nodes shared by two adjacent clements. All com-
putations were done in double precision on the Ridge 3200 computer system at Worcester
Polytechnic Institute.

Hollow cylinder under uniform external traction

A hollow circular cylinder subjected to a uniform pressure on its outer radius was
analyzed. The geometry of the cylinder is shown in Fig. 1. The inner radius of the cylinder
was chosen as the design variable for the computation of sensitivity results. Analytical
expressions for this example were given by Timoshenko (1934). The exact results, obtained

R =4 INCHES
N ELEMENTS /-4 N ELEMENTS
i 1 >

l .
iy INCH:[ K ~ 1000 PSI
| .

L ol
! R, = 20 INCHES

DESIGN VARIABLE: INNER RADIUS, R

Fig. 1. Hollow cylinder under external pressure.
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by performing the matenal derivative of these expressions, are available in the paper by
Kane and Saigal (1988).

A rectangular radial section of the cylinder was discretized using axisymmetric bound-
ary elements. Due to symmetry of this radial section only the top half of the rectangle was
modeled. The line of symmetry was modeled by specifying zero displacements in the :
direction along the r-axis.

The sensitivity results were obtained using a graded mesh of 30 elements (N = [0) as
shown in Fig. 1. The geometric sensitivitics were obtained through a 0.025% perturbation
of the inner radius and using finite-difference relations. The values for displacement- and
stress-sensitivities were given in Table . The analytical results for sensitivities were also
shown in Table | for comparison. A good agreement of the present results with the analytical
solution was seen.

Hollow sphere under uniform external traction

The response sensitivity solutions for the hollow sphere shown in Fig. 2 were obtained.
The hollow sphere was subjected to a uniform external pressure, P, = 1000 psi, and was
assumed to be sensitive to changes in its inner radius, R,. An initial inner radius, R, = 4 in..
and an outer radius, R, = 20 in. was used. The analytical sensitivity expressions for this
example may be obtained by the differentiation of the elasticity solution given in the text
by Saada (1987) as

> 3

P, w3 . R IRI
e, = 5\ TRl CRRINComr| ) =R ) ) [ Cotr{ Co 3 5 = i /Cf

_ PR [r— Rrio (1= R.‘/r‘)}

T

C; I R,
P, | 3R’ C3Q+RYPYYR!
Ty, = — 202 |: o (r—Rr )C,+ R :
Table 1. Hollow cylinder under external pressure (30 element model)
Design sensitivities
Radius Displacement x 10° Radial stress x 107! Hoop stress x 1077
(inch) Analytical Present Analytical Present Analytical Present
4.0 7.52315 7.5228 0.00000 -0.8173 0.43409 0.41331
4.3 7.51387 7.5135 -3.94616 —3.5825 0.82864 0.83800
4.7 7.44796 7.4475 —6.25734 —6.7407 1.05976 1.0477
5.0 7.34664 7.3462 —7.55208 —-7.4102 1.18924 1.1927
5.3 7.22355 7.2231 —8.20584 -8.393y 1.25461 1.2499
5.7 7.08754 7.0871 —8.45219 —8.3929 1.27925 [.2806
6.0 6.94444 6.9440 —8.43943 —8.5130 1.27797 1.2760
6.3 6.79815 6.7978 —8.26323 —8.2385 1.26035 1.2608
6.7 6.65123 6.6508 -798611 —8.0109 1.23264 1.2319
7.0 6.50540 6.5050 —7.64927 —7.6394 1.19895 11991
7.3 6.36176 6.3614 —-7.27999 —7.2855 1.16203 1.16175
1.7 6.22102 6.2206 - 6.89639 —-6.8911 1.12367 1.1239
8.0 6.08362 6.0833 —6.51042 —6.4850 1.08507 1.0853
9.0 5.69327 5.6930 - 5.40302 —5.4318 0.97433 0.97345
10.0 5.33565 5.3354 —4.42708 —4.3653 0.87674 0.87822
1.0 5.00806 5.0078 —-3.59516 —3.6234 0.79354 0.79273
12.0 4.70679 4.7065 —2.89352 —2.8426 0.72338 0.72462
13.0 4.42820 4.4279 ~2.30250 -~2.3223 0.66428 0.66368
14.0 4.16903 4.1688 —1.80318 —1.7681 0.61435 0.61520
15.0 3.92650 3.9263 —1.37924 —1.3926 0.57195 0.57154
16.0 3.69828 3.6980 —1.01725 —0.99337 0.53575 0.53633
17.0 348238 34821 —0.70630 —0.71544 0.50466 0.50437
18.0 327718 3.2769 —~0.43760 —-0.42149 0.47779 0.47818
19.0 3.08128 3.0810 —0.20407 —-0.21011 0.45444 0.45422

20.0 2.89352 2.8933 0.00000 —0.01586 0.43403 0.43446
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Fig. 2. Axisymmetric model of a hollow spherc.

where C; = (1 =20)/(1+v), Cy = 1 = RY/R} .4, is the displacement along the radial direc-
tion. r; a,, and o, arc the radial and circumferential stresses, respectively ; G is the shear
modulus ; and the design variable, X, is the inner radius, R,.

A radial cross-section of the sphere was modeled using 30 equally spaced clements.
The centerline of the sphere is not discretized. For the field point lying on the z-axis, the
singularity is treated by placing the point at a small radial distance from the axis as was
done by Henry ef al. (1987). The inner radius, R, was changed by 0.025% for the present
computations. The results for displacement-, traction- and stress-sensitivities along the edge
AR of the radial section are given in Table 2. In Table 2, the direct hoop stress sensitivitics
were obtained through the solution of eqn (9) whereas the derived hoop stress sensitivitics
were obtained using eqn (15). The analytical results obtained by using the above expressions
were also given in Table 2 for comparison. The present formulations provide good prediction

Table 2. Hollow sphere under external pressure (60 clement model)

Design sensitivities

Radius Displacement x 10° Radial stress Hoop stress x 10!

(inch) Analytical Present Analytical Present Analytical Direct Derived
4.0 3.61359 3.6222 0.0000  —19.302 0.91457 0.90433 0.52321
4.83 3.50135 3.5120  —88.5830 —98.454 5.34372 5.2104 5.1650
5.6 319249 32034 —-94.5276 —96.972 5.64096 5.4766 5.6416
6.4 286818 28795 —81.9143 82322 5.01029 4.8497 5.0496
7.2 2.57325 2.5851 —66.9694 —66.837 4.26304 4.1190 4.3075
8.0 231489 23273 -53.7313 ~53.515 3.60114 3.4780 3.6425
8.8 2.08995 2.1026 —42.8871 —42.724 3.05893 29583 3.0958
9.6 1.89305 1.9057 —34.2227 —34.147 2.62571 2.5473 2.6583

10.4 1.71899 17314 273389 —=27.346 2.28152 22241 23104
1.2 1.56336 1.5752 =21.8564  —21.931 2.00739 1.9691 2.0332
12.0 1.42262 1.4337 —~174635 —17.586 1.78775 1.7665 L8112
12.8 1.29395 1.3041 139171 —14.070 1.61043 1.6042 1.6319
13.6 117513 11842 —11.0308 —11.200 1.46612 1.4728 1.4861
144 [.06439 1.0723 —~§.66280 ~8.8335 1.34771 1.3654 1.3666
5.2 0.960341 096711 —6.70458 —6.8676 1.24980 1.2768 1.2678
16.0 0.861860 0.86746 —5.07303 —5.2205 1.16823 1.2029 1.1857
16.8 0.768049 0.77250 -3.70393 -3.8299 1.09977 1. 1406 1.1168
17.6 0.678182 0.68153 —2.54731 —=2.6476 1.04194 1.0876 1.0587
18.4 0.591662 0.59398  —1.56403  —1.6358 0.99278 1.0418 1.0093
19.2 0.508003 0.50937 -0.72313 ~0.7699 0.95073 1.0003 0.96640

200 0.426802 0.42732 0.00000  —0.1000 0.91457 0.94524 0.92155
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Fig. 3. Hyperbolic disk problem under external pressure.

of sensitivity results for this example using boundary clements with a circular geometric
configuration.

Disk with varying thickness under uniform external pressure

A hollow circular disk with a hyperbolic vartation of thickness between the inner and
the outer radius was analyzed. The hyperbolic gecometry in this example was modeled using
quadratic boundary elements. This case was considered for the present study since the
perturbation of the inner radius, R,, provides a more general input for the geometric
sensitivity. This input also includes the variation of normals at the nodal points in addition
to the variation of their coordinates. The geometry resembles that of an aircraft turbine
disk and is of practical significance.

A radial cross-scction of the hyperbolic disk was modeled using two different meshes
of 15 and 30 boundary elements, respectively. The number of elements used on cach side for
the 15-clement model are shown in Fig. 3. These elements were doubled on cach side for
the 30-clement model. The design variable, R, was perturbed by 0.025% and the edges A B,
BC, and AD were remeshed for the sensitivity computations. The sensitivity results for
displacement sensitivities and their convergence with a refined mesh consisting of 30
clements are given in Table 3. This table also shows the radial- and circumferential-stress
sensitivities for the 30 element model. The sensitivity results for displacements and recovered
stresses are given in Table 3. The analytical results obtained from the differentiation of the
elasticity solution given in Saada (1987) arc also given in Table 3. A state of plane stress
was assumed in the clasticity solution which leads to a constant stress through the thickness
for any circumferential section. This assumption was not made in the present analysis,
however. The results shown in Table 3 are then in good agreement and demonstrate the
validity of the present formulations for a more general, curved geometry.

Notched eylindrical bar under axial tension

A nolched bar with geometry as shown in Fig. 4 was used to determine the axial stress
sensitivitics due to the notch radius, R.. The bar is subjected to an axial tension of 1000 psi.
This cxample has previously been considered by Bakr (1985) for stress analysis using
boundary clements. In the present study, only onc half of the solid bar cross-scction was
modeled using 21, 42 and 84 elements, respectively. Again, to avoid singularities due to the
ficld point lying on the centerline, the centerline was not discretized. The meshes provided
are sufficiently refined to take account of the high stress concentrations in the vicinity of
the notches. The axial stress sensitivitics were obtained at the stress concentration location
A using the three respective meshes. This location on the cylindrical bar has a stress
concentration factor of approximately 6 for the geometry shown. The results for the
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Table 3. Circular disk with hyperbolic varving thickness

Design sensitivities

Displacement x 10* Hoop stress x 10~
Radius Saada Saada
(inch) (1987 Model A Model B (1987) Model B
4.00 9.47321 9.2630 9.2656 3.61679 3.1885
4.25 9.42680 — 9.1888 3.70837 3.6148
4.50 9.35745 9.0977 9.1002 3.72962 3.5803
4.75 9.27133 — 9.0059 3.70413 3.5739
5.00 9.17287 8.9071 8.9089 3.64779 3.5131
5.25 9.06521 — 8.8101 3.57141 M0
5.50 8.95065 8.7085 8.7095 3.48243 3.3595
5.75 8.83086 — 8.6068 3.38600 3.2700
6.00 8.70705 8.5013 8.5015 3.28567 3.1798
6.25 8.58009 — 8.3932 3.18392 3.0864
6.50 8.45064 8.2820 8.2817 3.08243 2.9946
6.75 8.31914 — 8.1669 2.98237 2.9032
7.00 8.18594 8.0496 R.0491 2.88450 28140
1.25 8.05124 —_— 7.9285 12.78934 2.7274
7.50 7.91522 7.8060 7.8054 2.69719 2.6433
7.75 7.717796 — 7.6802 2.60821 2.5628
8.00 7.63952 7.5539 7.5531 2.52248 2.4861
8.25 7.49994 — 7.4242 2.43999 24130
8.50 7.35919 7.2943 7.2934 2.36071 2.3458
8.75 7.21729 — 7.1600 2.28455 2.2801
9.00 7.07419 7.0238 7.0231 221142 22705
9.25 6.92986 —_— 6.8816 214119 2.1579
9.50 6.78426 6.7372 6.7360 2.07374 2.0889
9.75 6.63734 — 6.5900 2.00896 20146
10.00 6.48906 6.0526 64518 1.94672 1.9407

t Plane Stress Solution
Model A consists of 1S boundary elements, and
Model B consists of 30 boundary elements

Y >

] ——o
<+~ —— 1000 PSI
-+ b——

R R=1

R - 3.8
H-R R, = 2R,

<

DESIGN VARIABLE: NOTCH RADIUS, R,
Fig. 4. Notched cylindrical bar under axial stress.
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Table 4. Sensitivities of a notched cyvlindncal bar under axial
tension at stress concentration location

Number of elements

21 42 84

Axial stress < 107°

(pst) 62358 6.3462 6.3848
Axial stress

sensitivity x [0 * 30014 2.8661 2.8016
Radial displucement

% 10* (inches) —2.3713 — 23318 —~2.2875
Raudial displacement

sensitivity < {0° 312z 38130 38128

displacement. axial stress, und the corresponding sensitivities are shown in Table 4. A
convergence of the sensitivity results similar to that for the analysis results was obtained
using the present meshes.

CONCLUSIONS

This paper presents an implicit differentiation formulation for the design sensitivity
analysis of axisymmetric elastic continua. The kernel functions for axisymmetric sensitivity
matrices are presented. The integration of these differentiated kernel functions as well as
the evaluation of the singular terms of senstivity matrices based on the rigid body mode
and the inflation mode are discussed. The equations for recovery of boundary stress
sensitivities using the results of the design sensitivity analysis are given. Numerical results
for a wide class of axisymmetric problems with available analytical solutions are provided
to demonstrate the accuracy of the present approach. Additional examples show the ver-
satility of the method in predicting design sensitivities of problems with a general geometry
and stress concentration.

Acknowledgements - This rescarch was supported under NSE grant MSM 8707842, Dr AL Kobayashi is the project
monitor for this grant. The help of Professor P K. Banerjee in providing his continuous boundary element analysis
progriun is sincerely apprectated.

REFERENCES

Bakr, AL AL (1985). The Bounduary Integral Equation Method in Axisymmetric Stress Analysis Problems. Springer,
Berlin.

Banerjee, P K. and Buttertield, R. (1981). Boundury Element Methods in Engineering Science. McGraw-Hill,
U.K.

Barone, M. R, and Yang, R.J.(1988), Boundary mtegral equations tor recovery of design sensitivities in shape
optuntzation, AL4A Jnl 26, 589 594,

Brebbia, C. AL Telles, J. C. Foand Wrobel, L. C. (1984). Boundury Element Techniques. Springer, Berlin,

Cruse, T. A., Snow, D. W. and Wilson, R. B. (1977). Numerical solutions in axisymmetric elasticity. Comput.
Struct. 7, 445- 451,

Henry, D. P., Pape, D. AL and Banerjee, P K. (1987). New axisymmetric formulation for body forces using
particular integrals. J. Engng. Mech. 113, 671 683,

Kune, J. H, and Saigal, S. (1988). Design sensitivity analysis of solids using BEM. J. Engng Mech. 114, 1703
1722

Mota Soures, C. A, and Choi, K. K. (1986). Boundary clements in shape opumal design of structures. In The
Optintmn Shape, International Symposium, General Motors Research Labs, Warren, Michigan (Edited by J.
A. Bennett and M. E. Botkin). Plenum Press, New York.

Saadi, A.S. (1987). Elasticity, Theory and Applications. Malabar, FL.

Saigal. S. and Kane, J. H. (1989). A boundary clement shape optimization system for aircraft components. A/A.A
Jnl (to appear).

Saigal. S.. Aithal, R. and Kane, J. H. (1989). Conforming boundary clements in plane clasticity for shape design
sensitivity. fnt. J. Numer. Meth, Engng (1o appear).

Sarihan, V. and Mukherjee, S. (1982). Axisymmetric viscoplastic deformation by the boundary element method,
Int. J. Solids Struct. 18, T113-112K.

Timoshenko. S. (1934). Theory of Elasticity. McGraw -Hill, New York.

Wu. S. J. (1986). Applications of the boundary element method for structural shape optimization. Ph.D. thesis,
University of Missouri, Columbia.



Boundary element implicit differentiation equations 537
APPENDIX

The sensitivities of the kernel functions are written as
U., =G {U,,,LEI. +U. &, —U,; El,-U,.El,
U, =C{U
U:,‘L= _CHL’:’ILE1|+C‘_-,IEI,L v, E[ -U,

El + U El, ~ U, El,— U :El )}

P2l

oy

U, =2C, {U,.,,LEII +U &, — Uy EL - U £, IR
where
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The traction kernel sensitivities are given as

U.'.'l =
&L

T, =T, n+T,n +T,n+T,.n}
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’r.-r‘L = 2“ { T."I.Lnr + T:'Inr‘l_ + T:’I,L"-' + T"’Z"",L}
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(R. Z) and (r. 2) are the coordinates of the foad point. and the Gauss point on the body, respectively ; EZ, and
E7, are the clliptic integrals of the first and second Kind. respectively,



